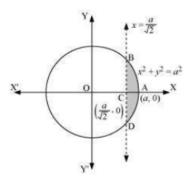
Find the area of the smaller part of the circle
$$x^2 + y^2 = a^2$$
 cut off by the line $x = \frac{a}{\sqrt{2}}$
Answer

The area of the smaller part of the circle, $x^2+y^2=a^2$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is the area ABCDA.



solution:

It can be observed that the area ABCD is symmetrical about x-axis.

Area of ABC =
$$\int_{\frac{a}{\sqrt{2}}}^{a} y \, dx$$

= $\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^2 - x^2} \, dx$
= $\left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_{\frac{a}{\sqrt{2}}}^{a}$
= $\left[\frac{a^2}{2} \left(\frac{\pi}{2} \right) - \frac{a}{2\sqrt{2}} \sqrt{a^2 - \frac{a^2}{2}} - \frac{a^2}{2} \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) \right]$
= $\frac{a^2 \pi}{4} - \frac{a}{2\sqrt{2}} \cdot \frac{a}{\sqrt{2}} - \frac{a^2}{2} \left(\frac{\pi}{4} \right)$
= $\frac{a^2 \pi}{4} - \frac{a^2}{4} - \frac{a^2 \pi}{8}$
= $\frac{a^2}{4} \left[\pi - 1 - \frac{\pi}{2} \right]$
= $\frac{a^2}{4} \left[\frac{\pi}{2} - 1 \right]$

$$\Rightarrow Area \ ABCD = 2 \left[\frac{a^2}{4} \left(\frac{\pi}{2} - 1 \right) \right] = \frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$

Therefore, the area of smaller part of the circle, $x^2+y^2=a^2$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is $\frac{a^2}{2}\left(\frac{\pi}{2}-1\right)_{\rm units}$.

$$\frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)_{\text{units.}}$$